envtoolkit.ts

Functions/classes relative to time-series

Functions

autolag1(TS1)

compute_daily_anom(data, date, clim)

Computes daily anomalies relative to a daily climatology.

compute_daily_clim(data, date[, smooth, nharm])

Computes a daily seasonal cycle from a daily dataset.

compute_monthly_anom(data, yyyymm, clim)

Computes anomalies relative to a monthly climatology.

compute_monthly_clim(data, yyyymm)

Compute a monthly seasonal cycle from a monthly dataset.

corr_ND(xdata, ydata[, use_covariance])

Computes the correlation/covariance between the xdata and ydata arrays at 0-lag.

corr_sig(ts1, ts2, df, coeff[, use_bretherton])

day_of_year(yymmdd)

Returns the day of year of

doy_to_date(year, doy)

Converts from day of year into date

make_monthly_means(data, yymmdd)

Computes monthy means from daily values

make_yymm(date)

Converts a list/array of date objects into YYYYMM integers.

make_yymmdd(date)

Converts a list/array of dates into YYYYMMDD integers.

remove_mean(xdata)

Remove the mean from the dataset.

smooth_data_fft(data, nharm)

Smooth an input data array by using a FFT filter.

standardize(xdata[, ddof])

Standardizes the xdata array

xcorr_1d(xdata, ydata[, maxlag, …])

Computes the cross-correlation/cross-covariance two one-dimensional arrays.

xcorr_ND(xdata, ydata[, maxlag, use_covariance])

Computes the cross-correlation/cross-covariance between the xdata and ydata arrays.

Classes

Lanczos(filt_type, nwts, pca[, pcb, …])

Class for Lanczos filtering.